QSFP-DD, OSFP, and CFP8: Which is the Best for 400G?

There are three criteria for a successful form-factor: small size, low power consumption, and interoperability between all systems vendors. As we all know, the SFP/SFP+ and QSFP+/QSFP28 are successful form-factors for 1G/10G and 40G/100G networks. In fact, for 100G networks, there are 4 different form-factors: CFP, CFP2, CFP4, and QSFP28. 100G The transmission departments in telecommunication networks need a pluggable…

The Technologies of Next-Generation Optical Transceivers – PAM4 and 64QAM

The shift to cloud services and virtualized networks has put the data center in the middle of our world and meant that connectivity within data centers and between data centers has a huge impact on the delivery of business and personal services. Hyperscale data centers are being installed across the world and these all need connecting. To meet this demand,…

PAM4 — The High-Speed Signal Interconnection Technology of Next-Generation Data Center

What Is PAM4? PAM4 (4-Level Pulse Amplitude Modulation) is one of PAM modulation technologies that uses 4 different signal levels for signal transmission. Each symbol period can represent 2 bits of logic information (0, 1, 2, 3), that is, four levels per unit time. In the data center and short-distance optical fiber transmission, the modulation scheme of NRZ is still…

What is PAM4 Encoding Technology?

With the PAM4 encoding technology, the amount of information transmitted on 50G PAM4-based optical transceivers within each sampling cycle doubles. A 25G optical component can be used to achieve a 50Gbps transmission rate, reducing the costs of optical transceivers. 50G PAM4 applies to multiple scenarios, such as single-lane 50GE PAM4 optical transceivers, 4-lane 200GE optical transceivers, and 8-lane 400GE optical…