I wrote a blog post some days ago on the different types of connectors available, which sparked a great deal of feedback and discussion, demonstrating how important the whole topic is to both fiber installers and network planners alike. Thanks again to everyone around the world that contributed, both directly on the PPC’s blog and through various social groups.
To recap, I covered SC, LC, FC, ST and MTP/MPO connectors, and looking through the comments I thought it would be beneficial to focus on one area that the original post deliberately didn’t cover – the differences between Angled Physical Contact (APC) and Ultra Physical Contact (UPC) connectors. Beside one having a green body and the other being colored blue, the different ways they both treat light is crucial in planning a network, as several readers pointed out.
To help us understand all this jargon, let’s look back at why the original Flat Fiber Connector evolved into the Physical Contact (PC) connector and then onto UPC and APC.
The primary issue with Flat Fiber connectors is that when two of them are mated it naturally leaves a small air gap between the two ferrules; this is partly because the relatively large end-face of the connector allows for numerous slight but significant imperfections to gather on the surface. This is not much use for single mode fiber cables with a core size of just 8-9 µm, hence the necessary evolution to Physical Contact (PC) Connectors.
The PC is similar to the Flat Fiber connector but is polished with a slight spherical (cone) design to reduce the overall size of the end face. This helps to decrease the air gap issue faced by regular Flat Fiber connectors, resulting in lower Optical Return Loss (ORL), with less light being sent back towards the power source.
So what the industry needed was a connector with low back reflection, that could sustain repeated matings/unmatings without ORL degradation. Step forward the Angled Physical Contact (APC) connector.
Although PC and UPC connectors have a wide range of applications, some instances require return losses in the region of one-in-a-million (60dB). Only APC connectors can consistently achieve such performance. This is because adding a small 8° angle to the end-face allows for even tighter connections and smaller end-face radii. Combined with that, any light that is redirected back towards the source is actually reflected out into the fiber cladding, again by virtue of the 8° angled end-face.
It is true that this slight angle on each connector brings with it rotation issues that Flat, PC and UPC connectors simply don’t have. It is also the case that the three aforementioned connectors are all inter-mateable, whereas the APC isn’t. So, why then is the APC connector so important in fiber optics?
The uses of APC connectors
The best feedback examples from my previous blog came from people experienced with Fttxand Radio Frequency (RF) applications. The advance in analog fiber optic technology has driven demand for it to replace the traditional coaxial cable (copper). Unlike digital signals (which are either ON or OFF), the analog equipment used in applications such as DAS, FTTH and, CCTV is highly sensitive to changes in signal, and therefore requires minimal back reflection (ORL).
APC ferrules offer return losses of -65dB. In comparison, a UPC ferrule is typically not more than -55dB. This may not sound like a major difference, but you have to remember that the decibel scale is not linear. To put that into context a -20dB loss equates to 1% of the light being reflected back, -50dB leads to nominal reflectance of 0.001%, and -60dB (typical of an APC ferrule) equates to just 0.0001% being reflected back. This means that whilst a UPC polished connector will be okay for a variety of optical fiber applications, only an APC will cope with the demands of complex and multi-play services.
The choice is even more important where connector ports in the distribution network might be left unused, as is often the case in FTTx PON network architectures. Here, optical splitters are used to connect multiple subscriber Optical Network Units (ONUs) or Optical Network Terminals (ONTs). This is not a problem with unmated APC connections where the signal is reflected into the fiber cladding, resulting in typical reflectance loss of -65dB or less. The signal from an unmated UPC connector will be sent straight back towards the light source, resulting in a high loss (more than 14dB), massively impeding the splitter module performance.
Picking the right physical contact connector
Looking at current technology, it’s clear that all of the connector end-face options mentioned in this blog post have a place in the market. Indeed, if we take a sidestep across to Plastic Optical Fiber (POF) applications, this can be terminated with a sharp craft knife and performance is still deemed good enough for use in the high-end automotive industry. When your specification also needs to consider cost and simplicity, not just optical performance, it’s hard to claim that one connector beats the others. Therefore whether you choose UPC or APC will depend on your particular need. With those applications that call for high precision optical fiber signaling, APC should be the first consideration, but less sensitive digital systems will perform equally well using UPC.
Post a Comment